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Vortex decay above a stationary boundary 
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An attempt is made to understand the decay of a free vortex normal to a 
stationary, infinite boundary. For rapidly swirling flows in fluids of small 
viscosity, thin boundary layers develop along the rigid boundary and along the 
axis, the axial boundary layer being strongly influenced by the behaviour of the 
plate boundary. An over-all picture of the flow is sought, with only moderate 
success in the region far from the origin. Near the origin, the eruption of the 
plate boundary layer into the axial boundary layer is studied. 

1. Introduction 
The mathematical flow to be investigated has some features in common with 

the decay of strong atmospheric vortices like the dust-devil or the tornado, 
despite the fact that we shall consider the flow to be laminar and the fluid incom- 
pressible, and that thermaI effects will not be taken into consideration. In  what 
follows we shall study the decay for t > 0 of a potential swirling flow when, at 
t = 0, we suddenly impose a constant positive value v to the kinematic viscosity. 
The flow prevailing at  t = 0 is taken to be a potential vortex, found in a body of 
fluid bounded by 0 < r ,  z < CQ and swirling on top of an infinite stationary 
horizontal plate located at  z = 0, the vortex line being coincident with the z-axis. 
The strength of the circulation of the semi-infinite vortex line is r, = 27~A,, 
where A,  denotes the initial angular momentum of all fluid particles. To complete 
our mathematical model, we shall assume that the fluid has a constant density p' 
and that the flow is axially symmetric. 

In the initial potential flow, a fluid particle describes with no spin a, circular 
orbit centred on the vortex line taken to be coincident with the z-axis. The only 
two forces acting on such a particle are a radial pressure gradient and a centri- 
fugal acceleration. These two radial forces are equal and opposite: No meridional 
motion is present. Aside from the vortex line and vortex sheet found on top ofthe 
plate, the bulk of the flow has no vorticity. A t  t = 0, as the kinematic viscosity 
switches from zero to v, the vortex line and vortex sheet will be smeared out and 
vorticity diffuses, from the plate and from the axis, into the fluid. The no-slip 
condition at  the plate decelerates fluid particles near it and thus destroys the 
radial balance of forces acting on a fluid particle. As a result, the unbalanced 
radial pressure gradient drives fluid inward in a layer above the plate. The 
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thickness of this layer is of the order of J(v t ) .  The fluid moving inward in the plate 
boundary layer erupts at  the origin and rises axially in an axial ' boundary layer'. 
It eventually returns to the inviscid region, thus generating a vertical circulation 
cell. Vorticity is then redistributed by diffusion and by convection. Figure 1 
illustrates the regions of a meridional plane in the physical space where these 
mechanisms are present. Far from the origin the governing equations are linear: 
vorticity is primarily redistributed by a diffusive mechanism. Near the origin, 
the convective redistribution of vorticity becomes important and the governing 
equations are non-linear. We shall devise some approximate methods to deal 
with these equations. 

0 al 

.z 
Meridional 
circulation 

4 cell 

1 Diffusion and ' 

Radial distance 

FIGURE 1. Dominant mechanisms for the redistribution of 
vorticity in the physical plane. 

2. Formulation of the problem 
If we denote by v' the dimensional velocity vector and by w' the vorticity 

vector V' x v', we can write the governing equations as (cf. Goldstein 1960, p. 89) 

-+a' x V'+V' - + iV'2 = - VV' x (0' x v'), 8V' 
at t: 1 

and W'.V' = 0, ( 2 )  

where p' and p' are the pressure and the constant density and where a prime 
denotes dimensional operators and dimensional dependent functions. The only 
two parameters a t  our disposal are the initial angular momentum A ,  and the 
kinematic viscosity v. Both these parameters have the same dimensions and 
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therefore, using J(A,t) as a characteristic length, we can define the following 
dimensionless functions: 

o (R ;  E )  = t ~ ' ,  A(R; 6 )  = A'/A,, J 
where E = v/A,; (4) 

the vector R is a dimensionless vector having cylindrical components ( 4 , ~ )  
contained in the meridional plane. The new independent variables c and 7 are 
defined as 

where ( r ,  z) is the dimensional cylindrical system having the initial vortex line 
as the z-axis and the plate as the ( z  = 0)-plane. Let us also introduce spherical 
co-ordinates (R, 8) where 0 is the colatitude; the dimensionless spherical radius R 

where p is the dimensional spherical radius. The meridional plane containing the 
R vector will be called the (R)-plane or the mathematical plane. In  this plane, 
the streamlines are the image of the streamlines found, at  any instant, in a physical 
meridional plane. The (R)-plane streamlines are stationary. For E Q 1, we divide 
the (R)-plane into : a plate boundary-layer region, an axial boundary-layer 
region, a corner region linking the previously mentioned regions and an inviscid 
region. In  the inviscid region, viscous forces are small compared with inertial 
forces and can be neglected. 

The reduction from three independent variables (r, x ,  t )  to  two independent 
variables (<,7) or (R,@ makes it convenient to formulate the problem in the 
(R)-plane. When we substitute (3) and (4) into (1) and (2) we obtain 

- &[v+ (R.V) V] + w x v + V ( ~  + +v') = -EV x (V x v), (5) 

and V.V = 0, ( 6 )  

where the unprimed operators are equal to (A,t)-* times the primed operators. 
As boundary conditions we demand that for < N 0 (Je), 7 = 00: 

(7 )  

u = w = o ,  A = < v = l ,  (8) 

(9) 

u = w = 0, A = [v = 1-exp(-g2/4c), 

for (12+v2)  -+ co, 6 + 7 + 0: 

for 6 = a, 7 N O(&): 

where (u, v, w) are the components of v along increasing (5, $, 7) where @ is the 
azimuthal angle. The boundary conditions (7 )  are identical with those for the 
diffusion of an infinite vortex line with circulation I?, ; i.e. we anticipate that, near 
the axis and at  large distances from the origin, the flow will not be affected by 
the plate. Similarly, the boundary conditions (9) assert that near < = co the flow 
resembles the diffusion of a vortex sheet of strength Am/<. We have transformed 
the problem from an initial-value problem to a boundary-value problem: the 

u = w = 0, A = <v = exp (47 &), 
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initial condition becomes the boundary condition on the arc 0 < 8 < &T, R = 00. 

The requirement that u = w = 0 on that arc is consistent with the initial potential 
vortex flow. 

On the plate, the no-slip condition demands that for [ > 0,r = 0 

u = v = w = 0, 

u = v = awlat = 0. 

(10) 

(11) 

Since w = 0 on the plate, awlat is also zero on that boundary and thus there is 
no jump in the boundary values found along the axis and along the plate. Also, 
the boundary conditions on the axis, at  7 = 00, and along the plate, at  t = 00, 

merge with those found on the arc 0 < 8 < &I, R = co. 

while on the axis we impose the condition 

3. Plate boundary-layer solution for large values of t 
Denote by Y the Stokes stream function defined as 

tu = Y, and [w = -Yt, (12) 

(13) 

and introduce the function q5(& 7; E )  related to Y through the relation 

#(5,7; 4 = t2vt,r ; €1. 
Anticipate the plate boundary-layer thickness to be of the order of Jc and define 
the stretched co-ordinate 5 as 

The unbalanced radial pressure gradient is the driving force in the radial 
momentum equation and such a force is O(e0). Therefore, we anticipate that 
u v O(@) and that q5 N O(&). We shall also assume ajat  < ajar, which is 
consistent with the requirement that the boundary layer is thin; a t  a given 
station t, the pressure does not vary appreciably across the boundary layer and 
can be equated to the pressure in the inviscid flow at that station. Define the 
€-expansions for @ and A as 

5 = rl$. (14) 

9( t ,  r ; E )  = E W ' ) ( t ,  5) + E P V t ,  5)  + . * * , 

A ( 5 , ~ ;  6 )  = A(')([, 5) + ~ * A ( l ) ( t ,  5) + . . . . 
(15) 

(16) and 

To obtain the governing plate boundary-layer equations, substitute (12)) (13), 
(14)) (15) and (16) into the cylindrical equations, of motion and retain terms of 
order (€0)). The resulting equations read: 

radial momentum equation 
@g)< + (+@pi + gq5':"r' - @p) - (1 - 
t l +  t---2---+ t - 3 -  

= ( 1 /t4) ( 2q5(0)#p - 3 # y )  + ( lit3) (4&)q5p) - #f"q5g) ; ( 17) 
<---- 4. f 

and angular momentum equation 
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In  the above equations -1- and -a- measure the viscous forces, -2- and -b- 
represent the local accelerations, -3- is the difference between the radial pressure 
gradient and the centrifugal acceleration, while -4- and -c- measure the con- 
vective accelerations. For [ 9 1, the local accelerations will outweigh the 
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FIGURE 2. Plot of F f ) ( z ) ,  n = 0,  1, 2. 
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convective accelerations. If, apriori, we infer that r$ N O( 1) and q5[ N O( lit), the 
convective accelerations -4- and -c- are an order [-4 smaller than, say, the local 
acceleration or any of the remaining terms. Define B, a kind of Rossby number, 
as the ratio of the radial convective acceleration to the centrifugal acceleration. 
Prom the above considerations, in the plate boundary layer, 

B = [-4, 

and -4- and -c- act as perturbations on the over-all momentum balance. For 
large values of [ we equate the right-hand sides of (18) and (19) to zero and a 
similarity solution of (18) implies that the angular momentum must equal 
erf (46). The convective accelerations, when taken into account, will introduce 
correction terms of the order Bn, where n = 1,2,3,. ... We can then formalize the 
procedure and write 

and 

N - 1  
r $ ( O ) ( [ , C )  = t-4nr$;)(x), x = ' 5  2 ,  

A'O'([, g) = c [-4"A$"(x), 

n=O 

M - 1  

n= 0 

where &"([) and A$')($ are unknown functions of g, and Nand Mare the number 
of terms retained in these series. Substitute (21) and (22) into (17) and (18) and 
equate the coefficients of [-4n to zero. Using quadratures we then solve for the 
first few of the x-dependent coefficients found in expressions (21) and (22). 
Figures 2 and 3 show these coefficients plotted versus x = 46. 

I = 1.0 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2-0 
Non-dimensional distance normal to the plate 

FIGURE 4. Plot of 26% and [w, at 5 = 1-0, when one, two or three terms are retained in tho 
asymptotic expansions of these functions. 
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The plate boundary-layer functions can then be written as 

161 

where x = $6 = 4 2  .J(vt). It can be shown (Barcilon 1965a) thatHdO)(x) and $do)(x) 
are negative functions of x while Ajo) is a positive function of x for O < x < 00. 

Figure 4 shows the functions 2c3u and A = tv when one, two, and three terms are 
retained and when = 1.0. 

L I I 1 1 I I I I I I I I 

0 1 2 3 4 5 6 7 8 8 1 0 1 1 1 2  

Radial non-dimensional distance [ = 
J(A,t) 

FIGURE 5. Projection of the streamline in the (c,  x)-plane. 

We shall conjecture that the error made in truncating these series is of the order 
of the first neglected term. Then, by keeping in turn one or two terms and by 
requiring an accuracy of or we find that these series verify such an 
accuracy criterion for values of 5 > to where to is a constant ranging from 1.2 
to 3.4. 

We retain the first term in the series listed in ( 2 5 )  and look at the projection of 
the streamlines in the (5, x)-plane. These curves satisfy an equation of the form 

5 = c .J( I ddOW 1 1 2  

where C is a constant of integration. The resulting curves are shown in figure 5. 
Fluid from the inviscid region sinks into the plate boundary layer and as it 
approaches the plate it acquires a radial inward motion. 

11 Fluid Mech. 27 
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4. Order Js inviscid solution 
In  the plate boundary layer, the fluid that is forced toward the axis erupts near 

the origin and proceeds in an axial direction. Since there is no sink along the 
axis at  infinity, this slug of fluid pushes on to the surrounding fluid, and we might 
anticipate that the axial boundary layer will affect the inviscid region like a line 
source. The inviscid-region flow then links the axial boundary-layer flow to the 
plate boundary flow. The potential vortex flow, which represents the leading 
term in the s-expansion of the inviscid flow, is purely azimuthal: the meridional 
motion in the inviscid region is then described by the O( 4s) terms. 

Let us outline the inviscid solution and its pitfalls. For a more detailed treat- 
ment the reader is referred elsewhere (Barcilon 1965a or b). The O(&) inviscid 
flow is coupled to the O(eo) plate boundary-layer flow through the prescription 
of the vertical velocity a t  the edge of the plate boundary layer. Because we only 
know the vertical velocity at  the edge of the plate boundary for R > to, we have 
to restrict our investigation of the inviscid region to the domain 

&,;oR;om, O < ~ < & T .  

On the arc 0 < 8 < R = 00, we demand that the entire flow be identical to the 
potential vortex flow, and the boundary condition in the vicinity of the axis and 
on the arc 0 < 8 < in, R = to are unknown a t  this stage. Substitute the O( J F )  
terms of the inviscid s expansions of the dependent functions into the governing 
equations and collect terms of order 4s. By considering the angular-momentum 
equation so obtained, we find that the angular momentum of O(4s)  remains 
constant on rays 6' = const. The boundary conditions on the arc R = co, 0 < 8 < in 
require that this constant be identically zero. As a result, the meridional and 
azimuthal motions are uncoupled: a fluid particle, by conserving its angular 
momentum, does not offer any resistance to lateral displacements. 

Let the inviscid e expansion for the pressure be written as 
p(R,O; F )  = -4 R2sin28+~4p(1)(R,6')+ ..., 

where the leading term represents the free vortex pressure. The O( JE) meridional 
inviscid motion is then described in terms of a single equation 

v2pm = 0)  (24) 
where V2 is the spherical Laplacian operator with the azimuthal dependence 
deleted. Let us point out that this equation holds for the entire inviscid region 
since we only made use of the boundary conditions at  infinity and assumed a 
potential vortex to prevail as the 0(so)  flow in that region. However, due t o  the 
restricted knowledge of the boundary conditions we shall arrive at an incomplete 
solution of the flow in a domain bounded by R > to) 0 < 8 < in. In  that domain, 
the solution of (24) in separable form is a standard one; namely we can express 

where ,u = cos 8 and where Pe and QP are the Legendre functions of the first and 
second kind. The geometry does not demand integer values for the separation 
constant 1, nevertheless we shall assume, from here on, that P is a positive integer. 
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The boundary condition at  R = 00 is automatically satisfied by the form 
represented in (25). The boundary condition on the plate, namely on R > co, 
8 = &, leads to a set of equations in which the Legendre functions evaluated 
at p =  1 are the coefficients of the C, and D,. Due to the parity character of 
these functions, only the C2i+l and D,  are determined by the use of the plate 
boundary condition. The Q&) being singular at p = 1, the flow behaviour in the 
vicinity of the axis is controlled by these singular functions: by matching the 
inviscid solution to the axial boundary-layer solution we shall only be able to 
determine the D2j+l coefficients. The remaining set of unknown coefficients, 
namely the CZj, are determined if we assume that the pressure p(l)(R, 8) is given 
on the arc R = to, 0 < 8 < +n-, say p(l)(R, 8) = n0(p). After some manipulations 
we find that the CZj not only depend on 7r0(p), but they are also expressed in terms 
of the D2j+l and the B4i+2 coefficients which are determined respectively by the 
axial and plate boundary conditions. 

All these coefficients are a measure of the sink or source strengths of the axial 
and plate boundary layers and their interdependence shows that the flow in 
various regions is intimately linked to all the others. 

To complete the problem we require a solution of the axial boundary-layer 
flow. In  this region we must retain a balance in the radial direction between the 
centrifugal acceleration and the radial pressure gradient. As aresult the boundary- 
layer differential equations for the axial region are four in number. Furthermore, 
the plate boundary layer, as will be seen shortly, erupts near the origin and 
discharges mass into the axial boundary layer. Thus we must know more about 
this mechanism before being able to tackle the axial flow. Nevertheless, from the 
inviscid solution we can deduce that, for large R, the ratio w / u  tends to zero as 
8log 8 when 8 tends to zero. 

5. Plate boundary-layer solution for small f 
To understand the eruption of the plate boundary-layer flow into the axial 

boundary layer we must first find a solution of the plate boundary-layer flow for 
values of f of O(1). The solution of $ 3  was based on the fact that, for f > to, 
vorticity is primarily redistributed by a diffusive mechanism ; i.e. the Rossby 
number was small. The radial velocity of a fluid particle found in the plate 
boundary layer increases as this particle approaches the axis. Thus, we anticipate 
that for O(D(c))  < f < to the convective accelerations will be of the same order 
of magnitude as the centrifugal acceleration ; i.e. the previously defined Rossby 
number B becomes of order unity in this region. (Here D(s) is the radius of the 
axial core at  its base.) As a result, we must retain the non-linear terms in the 
plate boundary-layer equations and these equations are solved by using approxi- 
mate methods. 

Let d A ( f )  be the thickness of the plate boundary layer at point f and define 

so that r equals zero at  the plate and unity at  the edge of the plate boundary 
11-2 
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layer. The q-averaged radial and circumferential plate boundary-layer equations 
read 

and (27) 

In the above equations a, p, y, A, b and a are defined as 

and 
1 

0 
b = k(1 ) -a ,  a = 1 -1%(7)d7, 

where we have assumed that u and v can be written as 

and 

f ( 7 )  and k(7) will be called the shape functions since, a t  a given 5, they determine 
the shape of the velocity profiles. The two unknown dependent functions are 
a(<) and q(6). S(5) is the normalized plate boundary-layer thickness defined as 

a([) = A([)/A(m) = A(Oi4.0; 

€4 A(co) is the constant thickness of the plate boundary layer for large values of f .  
The value of A(co) was taken as follows: for large f ,  when x equals 2.0, i.e. when 
q equals 4&, FJO’(2) and erf(2) equal respectively -0.012 and 0.995. Both 
functions are then within 1 yo of their value in the inviscid flow where F J O ) ( c o )  = 0 
and erf(m) = 1.0. We then define the plate boundary-layer thickness as the 
distance we have to move away from the plate for the velocity profiles to be 
within 1 yo of their inviscid value. Finally, the other dependent function q(6)  is 
defined as 

where &Q([ )  measures the flux across the plate boundary layer at point 5 and 
(30) d f )  = &(OPT 

As boundary conditions we demand that for large f 

a(6) = 1 (31) 

and a(() = #J0)(a)/af2, # J o ’ ( ~ )  = -0.585. (32) 

This last condition can easily be obtained if we substitute the leading term of the 
asymptotic expansion of u in the expression for Q ( f )  and the resulting expression 
in (30). 

Equations (26), ( 2 7 ) ,  (31), and (32 )  constitute our basic differential system. 
To solve such a system the shape functionsf(7) and k(7 )  must be specified. These 
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FIGURE 6. Plot of the normalized plate boundary-layer thickness ws. 5. 

The differential system (26), ( 2 7 ) ,  (31) and (32) was solved numerically on an 
IBM 7094: the integration was started at  5 = 4.1 and was continued until 5 = 0. 
Figure 6 shows the variation of 6(5) with 5: the normalized plate boundary-layer 
thickness is a slowly increasing function of 5 that reaches its asymptotic value 
when 5 is in the vicinity of 2.0. Figure 7 illustrates the variations with 5 of the 
plate boundary-layer flux &([) and of the function !2(5). See (28) for the definition 
of Q(5). Q ( [ )  is a negative function of 5 that has its maximum at 6 = 0. This means 
that the fluid, trapped in the plate boundary layer, moves inward in this layer 
until it  gets very close to the origin, before it erupts and moves upward along the 
axis. Finally, the equation of the projection of a given streamline in a plane 
parallel to the plate is given by 

where + is the azimuthal angle. In  (35) as 7 -+ 1, erf ( 27)/PJ0)( 27) becomes a large 
number, i.e. the orbit of a given particle is nearly circular at the edge of the 
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functions must satisfy the boundary conditions at  the plate and at  the edge of 
the boundary layer and must be such that the expressions for u and v, namely (28) 
and (29), agree for large values of [ with the leading terms of the correspond- 
ing quantities found in (23). If we let 

f(7) = pp(c7) (33) 

and 47) = erf (CT), (34) 

where C is an undetermined constant, we must demand that as -+ a, Cr tends 
to 712 Jc, or after making use of the definition of r we find that C must equal 
A(c0)/2.0 = 2.0. 
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FIGURE 8. Plot of a given streamline in the vicinity of the plate. 
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boundary layer. Figure 8 shows a given streamline in the immediate vicinity of 
the plate: a fluid particle near the plate approaches the origin in a spiral-like 
trajectory. 

u-+w-+--- = 0, 
85 a< a5 c 

u-+w- = 0 )  ae a< 
aw aw ap 

u-+w-+- = 0, a< a< 

aA aA 

6. Flow behaviour near the origin 
When 5 is in the vicinity of the origin and for moderate values of r ,  from (33) 

and (34) we can estimate the radial and the circumferential velocities to be 
O( lit). If we write the radial plate boundary-layer momentum equation as 

) 

where < = rl& 
we can readily estimate -1-, -2-, -3- and -4 to be: 

-1- - -4- N O(5-l)) 
-2- - -3- - O(t-3). (37) 

In  the above equation -1- represents the local radial acceleration, -2- is the 
convective radial acceleration, while -3- represents the difference between the 
radial pressure gradient and the centrifugal acceleration. Finally, -4- denotes 
the radial viscous forces. From the order of magnitude listed in (37) we deduce 
that the flow near the origin can be considered as steady and inviscid since -1- 
and -4- are an order c2 smaller than-2-and-3-. Consider a ring of plate boundary- 
layer fluid bounded by radii 5 and [ + d[ and having a height €+ A([). As this ring 
contracts to zero, the area of the rigid boundary in contact with that fluid 
diminishes: viscous forces are insufficient to slow down the inrushing fluid, 
This fluid is slowed down and forced upward by the pressure that builds up at  the 
origin. As a result, the turning is controlled by an inviscid mechanism. To be sure, 
viscous boundary layers are still needed on the plate and along the axis, but these 
layers are deeply embedded in the corner region flow. 

Near the origin, the governing equations are then: 

J a a 
-(&A)+- (tw) = 0. ac a< 

Let us consider a given streamline that links the plate boundary layer to the axial 
boundary layer. Let us label as station A the first point on that streamline that 
lies in the plate boundary-layer region, and as B the first point on that same 
streamline that lies in the axial boundary-layer region. By knowing the conditions 
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a t  station A, we shall be able to infer some of the flow characteristics of station B. 
On that streamline we shall write Bernoulli's equation, the conservation of mass 
and of angular momentum. At station B, we shall approximate the radial 
momentum equation by 

(39) 
ap v2 

a5 5 
- - 0. 

Define the stretched variables y and p as 
tj = q/dA(O)  

and P = W(4, 
where d A ( 0 )  is the plate boundary-layer thickness near the origin and where 
D(e) is the thickness of the base of the axial core. D(c)  is an unknown function of E .  

Axial 
boundary 
layer 

Potential 
vortex 

'. I A Plate boundary layer .----+- 
Corner reeion , 

0 D(C) 5 
Unstretched corner region in the (R) plane 0, 

4 
I1 

a ( b )  

P 

1 

0 1 .o 
Strctched corner region in the (R) plane p = (ID(€) 

FIGURE 9. (a )  Unstrctched corncr region in the (R)-plane. 
( b )  Stretched cornor region in the (R)-plane. 

Define (T and 7 so that in the stretched diagram of the corner region A and B are 
located respectively a t  (1 ,7)  and ((T, 1). Here (T is an unknown function of r. The 
reader is referred to figure 9, where all the above functions are graphed. 

Let subscripts A and B signify flow quantities at stations A and B. Conserva- 
tion of angular momentum implies that ~ ~ ( 7 )  and v,(cr) relate through the 

uA(r) = C T V ~ ( C T ) .  (40) relation 
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Conservation of mass requires that 

or, after a differentiation with respect to r ,  the above equation simplifies to 

- 2huA(r) = wB(P) dP/dr, ( 4 1 )  

where the parameter h is defined as 

h = s :A(O) /D(~) ,  

and where p(r) ,  the normalized cross-sectional area of the core, is defined as 

P(r) = g2(7). 

Both P(r) and A ( € )  are unknown functions at  this stage. Bernoulli's equation, 
written for the streamline AB, relates quantities at stations A and B by the 
following relation: 

P A  f &[ui(r) + ':(.) + wk(r)l = p B  + &[ui(p) f ' $ ( P )  + wB(P)l* 
Since wh is an order e smaller than (u; + w i )  and since we anticipate u$ to be much 
smaller than ('5 + wi), we can approximate the above equation by 

P A  + &[ui(7) $- vi(r) l  = PB f &[ ' i (P)  + w&(p)l* (42) 

The plate boundary layer being thin, the pressure at A' (see figure 9) equals the 
pressure at  A, i.e. 

(43 )  
P B - p A  =PB-PA,=/  0. V i ( P ) - - ,  dP 

1 P 

where the above equation represents the line integral of (39) along A'A. (40), ( 4 1 ) ,  
(42 )  and (43) constitute our basic equations andp, uB(P), wB(p) and (pB -pA)  are 
our unknowns. We can eliminate? vn(/3), wB(/3) and (pB - p A )  between these basic 
equations; the problem reduces to the determination of p(r) ;  namely we have 

with P(0)  = 0, p(1) = 1. (45) 

The above differential system is a two-point boundary-value problem for the 
function P(r) and the parameter h plays a role similar to  that played by an 
eigenvalue in linear boundary-value problems: the condition on p at r = 0 will 
only be satisfied for a given value of A. By starting at  r = 1, we integrated 
numerically the above differential system on an IBM 7094. For an accuracy of 
10-3, the integration yielded the following value for A: 

and therefore D(s) reads 
h = 0.689, 

D(E)  = &A(O)/h = 2.487~8 z 2.5e.t. 
t Barcilon (1965b). 
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FIGURE 10. Plot of p(7) ?is. T .  
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The diameter of the base of the axial core has the same order of magnitude as the 
thickness of the plate boundary layer. Figure 10 shows the variations of p(7) vs. r 
for the above value of A. In  the range 0.15 < 7 < 1.0, pis  approximately a linear 
function of r with a slope a = 1.156, while for 0 < 7 < 0-15p approaches the 
origin with zero slope. Care must be exercised when using the function p(7). The 
assumption that the fluid is inviscid invalidates such a function in the vicinity of 
r = 0. Nevertheless, using p(7) away from the valuer = 0 we obtain, at  station B, 
an approximate representation of the variations of the velocity profiles with 
radius. The vertical and circumferential velocities at B are 

and 

In the region where P ( T )  is approximately linear, (dp/dr )  is nearly constant; i.e. 
the vertical velocity at B, when expressed as a function of 7, is proportional to the 
radial velocity at A and has a magnitude of O(D-l(e)) - O(E-*). At B, wB(p) is also 
O(l/&).  Figure 11 shows the variations of ~ B ( ( T )  vs. (T = @$. 

7. Experimental flows 
It is desirable to verify, qualitatively, some of the results of the previous 

theoretical investigation using some experimental observations. In  particular, 
we want to test the hypothesis that the plate boundary-layer flow erupts in the 
immediate vicinity of the origin and we want to verify that the diameter of the 
base of the axial core is of the same order of magnitude as the plate boundary- 
layer thickness. We are then especially interested in modelling the flow behaviour 
in the vicinity of the axis and of the plate. An experiment modelling the decay 
of a vortex normal to a stationary disc presents a number of problems, owing to 
the unsteady character of the flow. In  the (R)-plane, the ‘steady’ flow in the 
vicinity of the origin is governed by the same set of equations and boundary 
conditions as the steady corner flow obtained when a vortex swirls on top of a 
stationary disk. If p f  denotes the departure from the hydrostatic pressure we 
have a correspondence between 

(&y ,u , v ,w ,  A , p , e )  and (r*,z*,u*,v*,w*,A*,p*,e*). 

The non-dimensional * quantities relate to the dimensional ’ quantities through 
the relations z* = x/L, r* = r / L ,  

U* = u’L/A,, 

W* = w’L/A,, 

V* = v‘L/A,, 

A* = A’/A,, 

p* = (Pf/P’) (L/Ao)2, €* = v/Ao; 

v is the constant kinematic viscosity, A, is the prevailing angular momentum in 
the steady vortex flow and L is a characteristic length. 

For our experimental flow, the apparatus consisted of a glass cylinder of radius 
L = 10 em glued on top of a flat glass plate. Water, with v = 0.01 cm2/sec a t  



172 Albert I .  Barcilon 

room temperature, was injected tangentially in the cylinder by means of an 
array of nozzles and was removed along the axis by means of a coaxial tube. 
When the prevailing angular momentum A ,  was of the order of 40 cm21sec, the 
free surface depression was small compared with the height of the water in the 
container. We assumed the free-surface effects and the side-walls effects to be 
small near the centre of the disk. The observations of the plate boundary-layer 
flow and of the corner region flow showed that; the flow was laminar except in the 
immediate vicinity of the origin; fluid moved, in the plate boundary layer, along 
spiral-like streamlines and erupted in the immediate vicinity of the axis. By 
observing the curvature of the streaklines emitted from a large crystal (a few mm) 
of potassium permanganate sitting on the bottom plate, we could estimate the 
plate boundary-layer thickness to range from 2 to 4 mm while the radius of the 
filament that erupted at  the axis was estimated to be of the order of 1 to 2 mm. 
The prevailing angular momentum A ,  was measured by timing the fluid particle 
located at a given distance from the axis of rotation. For A, = 40 cm2/sec and 
v = 0.01 cm2/sec, the experimental dimensionless number e* equals 2.5 x 
when L is taken as 10cm, s*tL equals 1.6mm. Therefore the plate boundary- 
layer thickness and the core thickness at the eruption agree with the predicted 
results. 

8. Vortex breakdown: theoretical model 
In  the experimental flow, the plate boundary-layer fluid erupts into a thin 

filament 1-2mm in diameter which bursts into a much wider core having a 
diameter between 3 and 4 cm. Such a phenomenon is called a vortex breakdown 
and seems to have been first noticed a few years ago by people working on the 
aerodynamics of delta wings. The reader is referred to Benjamin (1962) for a 
complete bibliography on this subject. The vortex breakdown phenomenon is 
still not very well understood, and various hypotheses have been proposed for its 
explanation. Benjamin (1962) ruled out the hypothesis that the vortex breakdown 
was an instability phenomenon and pointed out the analogy with the hydraulic 
jump found in channel flows. In  what follows we shall adopt the latter point of 
view and offer a simple theoretical model explaining this phenomenon. 

Consider an axial, steady, inviscid, cylindrical jet forced along the axis of a 
potential vortex flow in an unbounded fluid. Assume that the vertical velocity 
in the jet is uniform across its cross-section and that at  any such cross-section the 
pressure is a constant dictated by the value of the vortex pressure at  the outer 
edge of the jet and at that same level. Let D,, W, be the radius of the jet and its 
vertical velocity before the breakdown, while D, and W, denote the corresponding 
quantities after the breakdown. These quantities are shown in figure 12. Con- 
servation of mass implies 

on the cross-section a, b, the pressure force is 
(46) D; W, = Dg W,, 

where p is the constant fluid density and A,  the prevailing angular momentum. 
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FIGURE 12. Free-body diagram illustrating the vortex break-down phenomenon. 

Similarly, on the cross-section a2 b, the pressure force is -pAgn/2; i.e. these two 
pressure forces cancel. The only pressure force in the vertical results from the 
pressure exerted on the side a, a2 and b, b,. The net upward force on the free- 
body diagram shown in figure 12 is 

- n ~ ; p / ~ '  rdr/rz = -mpA~ln(D,/D,). 
D ,  

Conservation of vertical momentum implies that 

- Agln (D2/D1) = B$ W i  - 0: WZ,, (47) 

x = D,/D,, B = (24D1W,)/A0, (4% (49) 

x-{(2x1nx)/B2} = l /x (50) 

or, after we define x and the Rossby number B as 

(47), (48), (49) and (46) combine to yield 

which is a transcendental equation for x in terms of the parameter B. 
Consider the functions 

y(x) = x-(2/B2)xInx and z(x) = l/x; 
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these functions are plotted in figure 13 on a log-log paper. The intersection of 
these curves yields two roots for x: x1 and x,. x1 is always equal to unity, while x, 
moves on the arc a/3 when B < 1 and on the arc /3y when B > 1. Values of x < 1 
correspond to non-physical situations. Therefore, we must rule out the arc q3. 
As in the hydraulic jump, the vortex breakdown occurs when the governing 
parameter is greater than unity or when the flow is supercritical. Here the Rossby 

0.1 0.2 0.4 060*81*0 2 4 6 810 
x = D,/D, 

FIGURE 13. Plot of y(x) = x- ( 2 / B z ) x  In x and of z(x) = l /x  'us.$. 

number plays the part of the Proude number in the hydraulic jump: from (49) 
we can estimate the Rossby number prevailing in the experimental flows; such 
a number varied between 2 and 2.5. As a result, x varied between 7 and 2 5 ;  i.e. 
D, was predicted to be between 7 and 25 times bigger than D,. These predictions 
agree with the experimental observations. 

In the (R)-plane flow, the radius of the base of the axial core is 2.564 and the 
plate boundary-layer flux at  the origin is -5.764 so that the corresponding 
vertical velocity W, is w, = 5-7c*/r(2-5~*)~ 

and 

or B = 1.03. 

The Rossby number is barely greater than critical. 
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9. Conclusions 
In the decay of a vortex above a stationary boundary viscous forces play a 

major role in the set-up of a meridional circulation cell which carries mass, 
momentum and vorticity and which links all the various regions of the meridional 
plane. When diffusion of vorticity is the dominant mechanism for vorticity 
redistribution, we can arrive at  an asymptotic solution of the plate boundary 
layer. A fluid particle when trapped in such a region remains in that layer and 
exits near the origin where the flow erupts into an axial boundary layer. The 
eruption shows that the flow in that region is essentially governed by an inviscid 
mechanism whereby large pressure gradients develop, slow down the plate 
boundary-layer flow and turn it into an axial flow. Very large vertical and swirl 
velocities are found in this region where the core radius is of order €4. Centrifugal 
effects, by playing a role analogous to gravitational effects, can be responsible for 
the formation of a vortex breakdown which represents an abrupt transition from 
small to large core diameter. As a result, the whole axial boundary-layer structure 
is critically dependent on the flow conditions at  its base. Along the axis, the 
problem is a difficult one due to the non-linearity of the flow and due to the 
variations of the radial pressure gradient across the axial layer. We have looked 
at the O(e4) inviscid-flow solution but because of the lack of knowledge of the 
axial flow we were unable to link the different flow regions. This appeared in the 
solution as a set of unknown coefficients. 
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